PVA-S @df

PVA-S@df is our specially developed water soluble solution for dual extrusion when you need to print with styrene based materials. PVA-S@df has an excellent adherence to ABS, ABS-X, ASA-X, GLASSBEND and TPU98A. PVA-S@df dissolves slightly slower than regular PVA and it is advised to dissolve in luke-warm water, preferably in circulated water. PVA-S@df can handle higher nozzle temperatures (<250°C) without the risk of cross linking and clogging the nozzle and is therefore perfect for printing with styrene based materials which typically print at higher temperatures.

Features:

- · Great adhesion to styrene based materials
- Stable at higher nozzle temperatures (<250°C)
- Good dissolvability in luke warm water
- · Biodegradable when dissolved in water
- Performs in heated environments up to 55-60 °C

Colours:

PVA-S@df is available from stock in its natural color.

Na1

Packaging:

PVA-S@df is available in nearly any type of packaging and labelling but will always be supplied in a vacuum bag. Ask our team to help you customizing your product.

Filament specs.				
Size	Ø tolerance	Roundness		
1,75mm	± 0,05mm	≥ 95%		
2,85mm	± 0,10mm	≥ 95%		

Material properties		
Description	Testmethod	Typical value
Specific gravity	ISO 1183	1,19 g/cc
MFI 190°C / 21,6kg	ISO 1133	58 g/10min
Printing temp.	DF	240-250°C

Additional info:

PVA-S@df works with most adhesion techniques used for technical materials, but is best used with specialized 3d printing adhesion sprays or a glue stick.

PVA-S@df can be used on most Dual printing desktop FDM or FFF technology 3D printers.

Storage: Cool and dry (15-25°C) and away from UV light. This enhances the shelf life significantly.